阿斯麦ASML最先进的DUV光刻机:每小时完成300片晶圆的光刻生产

发布时间:2021-08-24 10:00:59编辑:xiaowu

8月24日,阿斯麦ASML为用户推出了一篇科普文章,介绍了其光刻生产的相关技术。从里面我们看出想要生产制造出这样精密的设备确实是非常具有难度的。介绍了机器从光源开始的相关工作原理,还有整个光刻机最重要的部分,就是它的晶圆平台模组,对整个生产系统具有主导的地位。

ASML 表示,在这样一个争分夺秒的行业里,时间就是金钱。ASML 也一直在追求光刻机极致的速度,目前最先进的 DUV 光刻机,每小时可以完成 300 片晶圆的光刻生产。

换算一下,完成一整片晶圆只需要 12 秒,这还得扣除掉晶圆交换和定位的时间,实际光刻时间要更短。而一片晶圆的光刻过程,需要在晶圆上近 100 个不同的位置成像电路图案,所以完成 1 个影像单元(Field)的曝光成像也就约 0.1 秒。

所以大家看到的动画其实都是慢动作了。要实现这个成像速度,晶圆平台在以高达 7g 的加速度高速移动。7g 加速度是什么概念呢?F1 赛车从 0 到 100km/h 加速约需要 2.5 秒,而晶圆平台的 7g 的加速度,若从 0 加速到 100km/h 只要约 0.4 秒。

光刻机的准,是包括水平方向和垂直方向的。在水平方向上,芯片制造是一层层向上叠加的,最高可达上百次叠加。

每一次的叠加,都必须和前一次完美重叠,重叠的误差,称为套刻精度(overlay),现在的要求已经到了 1~2 纳米。而晶圆从传送模组传送并放置在晶圆平台上,会产生一定的机械误差,而精密机械的误差是微米等级(1 微米 = 1,000 纳米),也就是说每片晶圆上了晶圆平台,总是有个数千纳米以上的偏移。

要怎么才能做到每次的叠加套刻精度在 1~2 纳米呢?

从垂直面上,由于光刻机的投影物镜太巨大,在对焦点上下可接受的清楚影像范围小于 100 纳米。而从微观的角度来看,晶圆表面是高低不平的,若累加晶圆平台的高低差,在晶圆表面不同位置的光阻高度可以相差 500~1,000 纳米。

这些巨大的偏移和高低差,使得每次曝光之前,必须针对每片晶圆做精密的量测,截取到晶圆每一个区块纳米等级的微小误差。在曝光阶段实时校正,达到纳米等级的准度。

双晶圆平台也是 ASML 光刻机为了同时达到快和准所发展出来的。精准量测不可少,但需要花不少时间,双晶圆平台在一个晶圆平台在给晶圆进行曝光时,另一个平台可对下一片晶圆进行量测校正。实现测量和曝光的无缝衔接,极大地提高了生产效率。

在保证了快和准之后,还要考虑到机台的稳定程度。

光刻机以极高的加速度进行扫描曝光(scan), 在不到 0.1 秒的时间,又要急停并回头往反方向扫描,这么大的力量如果不做控制,会让整机产生振动,是不可能达到完美成像的。ASML 光刻机利用所谓的 balance mass 来吸收平衡晶圆平台所施加于机座的反作用力,完美平衡,整座机台完全静止,稳如泰山。

晶圆在量测端完成了极精密的量测,还需要在极短的曝光时间内,完美定位,这就要靠精密机械运作,和实时的定位校正了。ASML 光刻机可实现每秒两万次量测定位校正,以精度达到 60 皮米(0.06 纳米,比一个硅原子还要小)的传感器确认精准定位。

ASML 最先进的 DUV 光刻机,每天可以光刻 6,000 片以上的晶圆,也就是每天要来回扫描 60 万次以上。如何做到 24 小时运作,365 天全年无休,依然维持纳米精度?晶圆平台难道不会磨损吗?事实上晶圆平台是采取所谓无接触移动的。讲得玄一点,晶圆平台在成像扫描过程中,都是飘浮在空中快速来回运动的。ASML 晶圆平台的悬浮技术有两种,Twinscan XT 的气浮方式和新一代 Twinscan NXT 的磁悬浮方式。借由无接触的移动方式,达成极高速的运动和持久稳定的运作。

ASML 结合了精准量测、精密机械、精准定位、光与磁的掌握,以及水的完美运用,一步步打造出了独步全球的光刻机,从而让摩尔定律得以延续。

相关资讯

推荐下载

网友评论

加载更多
回复 [楼 ]取消回复